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Robust design technology has been applied to versatile engineering problems to ensure con-
sistency in product performance. Since 1980s, the concept of robust design has been introduced
to numerical optimization field, which is called the robust optimization. The robustness in the
robust optimization is determined by a measure of insensitiveness with respect to the variation
of a response. However, there are significant difficulties associated with the calculation of varia-
tions represented as its mean and variance. To overcome the current limitation, this research
presents an implementation of the approximate statistical moment method based on kriging
metamodel. Two sampling methods are simultaneously utilized to obtain the sequential sur-
rogate model of a response. The statistics such as mean and variance are obtained based on the
reliable kriging model and the second-order statistical approximation method. Then, the simu-
lated annealing algorithm of global optimization methods is adopted to find the global robust
optimum. The mathematical problem and the two-bar design problem are investigated to show
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the validity of the proposed method.
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1. Introduction

Robust design is an engineering methodology
for optimizing the product and process conditions.
The concept of robust design was pioneered by
Dr. G. Taguchi in the late 1940s, and he had a
big effect on quality engineering in the 1980s and
1990s. Since 1980s, his technique has been appli-
ed to numerical optimization, complementing the
deficiencies of deterministic optimization. This
newly developed method is often called robust
optimization, and it overcomes the limitation of

* Corresponding Author,
E-mail : leekh@donga.ac.kr
TEL : +82-51-200-7638; FAX : +82-51-200-7656
Department of Mechanical Engineering, Dong-A Uni-
versity, 604-714, Korea. (Manuscript Received Novem-
ber 7, 2005; Revised May 18, 2006)

deterministic optimization that neglects the effect
of uncertainties in design variables and/or design
parameters (Fowlkes and Creveling, 1995 ; Lee
and Park, 2005).

The robustness can be classified into two cate-
gories by taking into account the conventional
(or deterministic) optimization formulation. One
is related to the objective function, while the other
is related to the constraint function. The robust-
ness of objective function is determined by a mea-
sure of its variation. On the contrary, the robust-
ness of the constraint function is defined by the
feasibility condition which indicates that the op-
timum always lies in the feasible region (Parkinson,
1995; Lee and Park, 2001). The uncertainties,
that can be the tolerances of design variables
and/or the variations in design parameters, often
induce severe variations in the objective and con-
straint functions. It is no less dubious to relate
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that the robust design concept is essential to that
kind of design problem.

To consider the robustness, statistics such as
mean and variance (or standard deviation) of a
response should be calculated in the robust opti-
mization process. Hereafter, “statistics” imply mean
and variance. Due to the computational burden
associated with the calculations of true statistics,
most researches (Parkinson, 1995 ; Lee and Park,
2001 ; Lee and Jung, 2002 ; Doltsinis and Kang,
2004 ; Han and Kwak, 2004 ; Gumbert et al.,
2005) in robust optimization suggest approximate
statistics or a newly defined robustness index in
lieu of true statistics. However, existing approxi-
mate statistics are determined from the first-order
statistical approximation method, so its use is
limited in gradient-based optimization requiring
second-order derivatives. The use of robustness
index also does not provide exact statistics. Fur-
thermore, the previous researches did not dare to
adopt an algorithm for global optimization in
searching robust optimum since they utilized the
true function in order to evaluate the approximate
statistics or the newly defined robustness index.
An implementation of robust design adopting the
gradient-based optimization algorithm leads to
finding a local robust optimum. However, multi-
ple local robust optima can exist even in a uni-
modal or non-monotonic function.

This research implements a methodology for
robust optimization overcoming the current limi-
tations. Two main approaches are developed. The
first approach is to make the reliable kriging
model and the approximate statistics for a re-
sponse. The second approach is to solve the ro-
bust optimization by applying the simulated an-
nealing algorithm in order to find the global
robust optimum.

Robust optimization can be formulated by cap-
turing the design characteristics. However, re-
gardless of the design characteristics, its objective
and constraint functions are composed of their
statistics. When the statistics of responses are cal-
culated based on their kriging models, all of the
functions in the robust optimization can be ex-
pressed in mathematical forms, which leads to a
simple optimization problem. The critical com-

ponent of the procedure is to make a reliable krig-
ing model in order to replace the true response
function. To gain more accurate kriging model,
two sequential sampling methods are applied.
One is to select a new sample point by maximiz-
ing MSE (mean square error) of initial kriging
model, while the other is to select the new sample
point as a stationary point. If the stationary point
exists in the response function, the added point
determined by the latter method may be one of the
local robust optimum.

In the formulation for robust optimization,
the statistics of responses are represented by the
second-order statistical approximation method.
However, the first-order statistical approximation
method can be confused when finding the robust-
ness. Once this is accomplished based on kriging
metamodels, a global optimization method such
as tabu search method, simulated annealing algo-
rithm or genetic algorithm can be employed to
solve the design formulation. In this research, the
simulated algorithm is adopted. In the course of
calculating the global robust optimum, the com-
putational cost is very low since all the true func-
tions composing robust optimization formulation
are replaced by simple mathematical expressions.

The mathematical problem (Leary, 2004 ; Lee
and Jung, 2005; Lee and Park, 2005) and the
two-bar design problem (Jin et al., 2003) are
investigated to show the validity of the proposed
method. In the two-bar design problem, not only
the robustness of objective function but also the
robustness of constraint function is investigated to
consider the constraint feasibility. For both of
examples, the approximate statistics at the cal-
culated global robust optimum are compared with
those generated by the Monte Carlo simulations.

2. Global Robust Optimum
and Kriging Model

2.1 Global robust optimum
(Lee and Park, 2005)

The variations of responses are generated from
the uncertainties in the design variables and/or
the design parameters. The purpose of global ro-
bust optimization is to find the design with target
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Fig. 1 Concept of global robust optimum

response and smallest variation. The result shall
be called the global robust optimum hereafter. To
explain the global robust optimum, the mono-
tonic and multi-modal functions are shown in
Fig. 1(a) and (b), respectively. Suppose that it is
a minimization problem of f(x;) with random
variable x; normally distributed, then it can be
seen in two functions that the value x12 is more
robust than value xy; since the distribution of
f(x12) is smaller than that of #(x1). Thus, the
design point xj2 is considered better for an
insensitive design. As depicted in Fig. 1(a), there
is only one local robust optimum in the design
range. On the contrary, seven local robust optima
in the design range are marked with solid points
in Fig. 1(b). The seven local robust optima are
also marked in Fig. 1(c), which represents the
variance of f (x1). Furthermore, a monotonic func-
tion or a uni-modal function may have more than
one local robust optimum. Thus, it is desirable to
adopt a global optimization method to obtain the
global robust optimum.

As illustrated in Figs. 1(b) and (c), a robust
optimum with the smallest variance in design range
is called the global robust optimum. However, the
global robust optimum should be obtained around
the target value that is determined by design char-
acteristics. Thus, the formulation for global opti-
mization is represented by the means and vari-
ances of responses.

2.2 Kriging model

Kriging method for an approximation model is
well described in references (Sacks et al., 1989 ;
Guinta and Watson, 1998 ; Sakata et al., 2003 ;
Santner et al., 2003 ; Lee and Jung, 2005 ; Lee,

2005). In the kriging model, the global approxi-
mation model is represented as

f(x)=p+z(x) (D)

where x=b or x=[b" p"]”, B is a constant, and
z(x) is the realization of a stochastic process
with mean zero and variance s’ following the
Gaussian distribution. In this paper, b means the
design variable vector, and p means the design
parameter vector. Let the number of components
in b n, and the number of components in p o.
Thus, the number of components in X is m=
n+o. Let f(x) be an approximation model.
Hereafter, " means the estimator. When the mean
between f(x) and F(x) is
minimized, the f(x) becomes

F®)=8+r"x) R (f—fa) (2)

where R™! is the inverse of correlation matrix R,

squared error

r is the correlation vector, f is the observed data
with 7s sample data, and q is the vector with 7
components of 1. The correlation matrix is de-
fined as

R(x', x*) =Exp| — 3,6l —!F |
(j:]’ e

(3)

o ns, R=1, -, %s>

where 0, is the ;-th parameter corresponding to
i-th variable.

By differentiating log-likelihood function with
respect to 8 and s respectively, and letting them
be equal to 0, the maximum likelihood estimators
of B and s? are determined as Egs. (4) and (5).

B=(q"R™'q) 'q"R'f (4)
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Similarly to previous estimators, the unknown
parameters of 6, G, -+, On are calculated from
the formulation as follows

L [#s In(8% +1In|R|]
maximize 3 (6)

where 0; (i=1, 2, -+, m) >0. In this study, the
method of modified feasible direction is utilized
to determine the optimum parameters. The mean
squared error of the predictor is derived as Eq.

(7).

f2=§2[1—rTR‘lr—i-[;l_l}l;I_{;r)Zﬂ (7)

2.3 Sequential sampling

The reliability of a metamodel depends on the
sampling strategy and the number of sample points.
When the sampling strategy and the number of
sampling points are fixed, the sequential sampling
approach can be utilized to improve the previous
metamodel. Despite the steady growth of hard-
ware, a single evaluation of response can take
minutes to hours. For such a design problem, the
accuracy of approximation model can be improv-
ed efficiently by sequential sampling approach.
Every sequential sampling method has its strong
and weak points, and the details are described in
the references (Jin et al., 2002 ; Turner et al.,
2003 ; Lee and Jung, 2005). In this research, two
sampling strategies are simultaneously adopted to
make a sequential kriging model.

The first strategy is to find the points with
minimum magnitude of gradient vector. In non-
monotonic function, the points coincide with the
stationary points. As illustrated in Figs. 1(b) and
(c), each stationary point is identified as one of
local robust optima. If we make a prediction at
the j-th sample point using kriging model, the
estimator gives the j-th response of f. That is
clearly proved by Eq. (8).

F(x) =B+r" (x) R (f—Ba) (8)

=B+i"(f—Bq) =1’
where i is the vector with 1 in the j-th component
and Os in other components, and f’ is the j-th
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component of f. It is known that the error of
estimator is very low around any selected sample
point in kriging model. Thus, this fact can im-
prove the kriging model for robust optimization
by including the stationary points as the sample
points, though they are determined from the ap-
proximation model. The formulation to find those
points is defined as
Minimize |V (x) || 9)
x  <x<xy with x4(F=1, -, )

where x5 means the initial design and 7y is the
number of initial designs. In short, the formula-
tion of Eq. (9) is solved as many as 7, using a
gradient-based optimization. For the example pro-
blems, 7y is set up as 100, and the initial designs
are randomly determined by the Latin hypercube
design method. In this study, the method of modi-
fied feasible direction is utilized to solve Eq. (9).
This process is not a computational burden since
the optimization is performed by using simple
kriging model.

The second strategy is to apply the MSE ap-
proach like Eq. (10).
(1—q'R7'r)’

.. 2_ 2|1 _.TR-1
Maxzmzie t s{l r'Rr+ 'R q

} (10)

X <X<Xy

The formulation of Eq. (10) (Sacks et al., 1989 ;
Jin et al., 2002) is solved by using simulated an-
nealing algorithm. From this formulation, one
point is added to the existing sample points.
For the conventional optimization, the relia-
bility of kriging model can be increased when any
point near the optimum is selected as the sample
point. On the contrary, for the robust optimiza-
tion problem, it is important to maintain the re-
liability of kriging model over the entire design
space since the formulation of robust optimiza-
tion is defined as the statistics of response func-
tions. Thus, it is recommended that the more
sample points than those of conventional optimi-
zation be selected to make a prediction model.

2.4 Approximate statistics
Regardless of the design characteristics, the ob-
jective and constraint functions in robust optimi-
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zation are composed of the statistics of responses.
If all the functions in design formulation can be
expressed as simple mathematical forms, it is not
hard to apply any optimization algorithm to find
the robust optimum. Thus, the introduction of
kriging model and approximate statistics can fa-
cilitate the robust optimization.

The mean and variance of a response function
are regarded as the statistics to measure its ro-
bustness. The mean g called the first statistical
moment and the variance o7 called the second
statistical moment of function f are represented as

w=E[f(b+z°, p+z’)]
=ff--ff(b+zb, p+2z?) i (2P) -+ (11)

un(28) v1(2f) « 00 (28) dzP- - dzidzt - - dz8

0?=E[f (b+z°, p+z*) —1/)?
:ff.../{f(b—}—zb, p+z") — P (2) -+ (12)

un(28) v1(2f) « 00 (28) dzt - - dzbdzt - - dzb

where z° and z° represent the noises of design
variables and design parameters, and 2 (zf) and
v:i(2P) are the probability density functions of
noise factors z” and 2P, respectively. The noises,
z" and z°, induce the variation of a response, f
(Lee and Park, 2005; Park et al., 2006). The
integrations represented as Egs. (11) ~ (12) are
very expensive or sometimes impossible to per-
form. Thus, most researches have utilized the ap-
proximate statistics using the first-order statistic-
al approximation method, overcoming the time
consuming calculations. That is,

w=f(x)x (13)
0'%;#21(39{1‘ )j‘; G?Ci (14)

where 0%, represents the variances of 7-th vari-
able x;, and X represents the mean vector of vari-
ables, respectively. However, the use of Egs. (13)
and (14) in the highly nonlinear function with
large input deviations can be confused when mea-
suring the robustness. Figs. 1(b) and (c) illus-
trate that the global robust optimum is x12. When
the Eq. (14) is adopted to obtain ¢%, any point
marked with a solid circle has the same variance
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as zero, which gives rise to an unpredictable re-
sult. On the contrary, for a monotonic function
with small input deviations, Eqgs. (13) and (14)
can be utilized as an index of robustness even
though it cannot give the exact variance. Thus,
Egs. (13) and (14) are useful in replacing the true
statistics only for the monotonic function as in
Fig. 1(a) but in general, it is difficult to deter-
mine whether a function is monotonic or not in
design range.

To overcome these difficulties, the approximate
statistics using the second-order statistical ap-
proximation method are adopted as

~ 13 (P
W= s 52 (5h), & 09)

3=3( L) 2413820 ). @) (9

One might ask how difficult it is to calculate
these statistics. As you know, the direct use of
Egs. (15)-(16) may fail to determine the robust
optimum since it is very expensive to obtain the
second order terms of true functions. Further-
more, if the gradient-based optimization algo-
rithm is selected as the optimizer to solve the
formulation, that requires second derivatives for
Egs. (13) and (14), and third derivatives for (15)
and (16). In practical application of complex
design, we cannot accept the calculation of more
than first-order derivative using finite difference
method in optimization process. Thus, it is not
desirable to introduce the gradient-based optimi-
zation algorithm and the true function in solving
the robust optimization.

Let us replace the true function f with the
kriging model 7 in Egs. (15) and (16). Then, the
first and second derivatives with respect to x; are
analytically determined as

V1) 00N gt o). (=1, m) (17

PP _ () poae (il
ox:0x;  0X:0X; R (f—pa), (7, /=1,

-, m) (18)

where
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8r7(x)__ oAl A2 L
axi —[ 261~(x1~ xi)A, 25{()6{ Xi>A, , (19>
—20; (x;—x) A™]
P (aitx-ah) (20 s A,
(=26, (x-) (~20, (-2 22, -, 20
(=20:(xi—x)) (=26; (x;—x]°)) A (i %7)
@#:[—Zﬁﬂl(lﬂexxi—x})z),
X7

0A 0120, 2D

_20iAns<1 +20; (xi—x?s) 2) :| (ZI])
A*=Exp[—6((r1—x1)?) — G((r2—x5)%)
—On((xn—2x8)?)]

Substituting Eqgs. (17)~ (22) into Eqgs. (15)~ (16),
the statistics such as mean and variance are sim-

(22)

ply and mathematically defined, facilitating glob-
al optimization as well as gradient-based optimi-
zation.

3. A Strategy for Robust
Optimization

A strategy for robust optimization is proposed
by using sequential kriging model and simulated
annealing algorithm. The steps of the proposed
algorithm are as follows :

Step 1: Construction of primitive kriging model
in lieu of true response function

First, calculate the response functions of 7 (x)
with respect to 7s sampled design points. Design
of experiments strategies is often used to sample
the design space. Depending on analysis time, full
combination, orthogonal array or Latin hypercube
design can be selected as the sampling method.
For an example, the sample points are generated
by Latin hypercube design that minimizes Eq.
(23) (Leary et al., 2004).

s s ]

23
i=1j=1i+1 dij < )
where d; refers to the distance between points 7
and j. To assess the kriging model, the error in
surrogate model is characterized by using a few
metrics defined as

RMSE = n%é (fi—Fo)? (24)

MAXERR=MAX [|fi—F.l, i=1, 2, -, n.] (25)

Ave. % errorZL% @‘X 100 (26)
Nt i=1 fi
CV=\/ -2 fi=F-)* 27)

where 7. is the number of sample points for vali-
dation, and f_; is the 7-th estimator of kriging
model constructed without the z-th observation.
The metrics such as Eqs. (24) -(26) have the short-
comings that they need #; additional function
calculations. On the contrary, the metric called
the cross validation defined by Eq. (27) does not
require any additional function calculation. But,
C V' should construct the kriging models as many
as #s, which is a time consuming process. In the
reference (Jones et al., 1998), this process is re-
duced by using the calculated 4 and @, but by
calculating R, r and f with respect to #s-1 sample
points. However, this reduction is valid under the
assumption that elimination of one sample data
has a negligible effect on the maximum likelihood
estimates.

Step 2 : Construction of improved kriging model
using sequential sampling

The more accurate kriging model than one
made by Step 1 is constructed by two sequential
sampling approaches. The details are explained in
Sec. 2.3. Thus, two optimization problems should
be solved in Step 2, of which one is performed by
modified feasible direction method and the other
is performed by simulated annealing algorithm.
When a new selected point is very close to any
existing sample point or another new selected
point, it is excluded from the sample points. To
describe the distance constraint, Egs. (28)-(29)
are introduced as

[x"i—x|>¢, (i=1, -, nn, j=1, -, ns) (28)

[x" i —x" | >, (i=1, -+, nn, j=1, -+, nn) (29)

where 7, is the number of sample points sup-
plemented by Egs. (9)-(10), x™*? is a new se-

new,j

lected point, X277 is the selected point except the
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i-th point, and & is a small number. That is, the
new selected points determined from Egs. (9) ~
(10) should satisfy Egs. (28) ~(29) to be aug-
mented to the existing sample points.

Step 3: Formulation for robust optimization

The formulation for robust optimization can be
defined by the design characteristics. Neverthe-
less, the objective and constraint functions are
described as the statistics of responses. For an
example with minimization, let us consider the
following formulation.

Minimize iy (X) + k67 (X)
Subject to fig;(x) +k6g(x) <0, j=1, -, Nc (30)
X <X<Xy

where N is the number of constraints, and /g (X)
and §g(x) are the mean and the standard devia-
tion of j-th constraint function g(x) defined in
conventional optimization, respectively. The con-
stant % is introduced to consider the robustness.
When the distribution of variables X is normal
and its functions #(x) and g(x) can be approxi-
mated as linear with respect to X, the distributions
of f(x) and g(x) can be regarded as the normal
distribution. Then, if £=3, it means that the con-
straint of Eq. (30) imposes the feasibility related
to 99.73% of its distribution.

In view of objective function in Eq. (30), the
worst case of response f(x) is set up as the ob-
jective function. It means that the objective is to
minimize the worst case of original objective func-
tion. In design process, it is not guaranteed that
their distributions are always assumed to be nor-
mal even though they can be tested by Shapiro-
Wilk statistic for a fixed design point. As an
example for Figs. 1(b) and (c), the distribution
of f(x1) at any stationary point is apparently
non-normal. However, though the distribution
of any function is not normal, Eq. (30) is also
meaningful. At that case, it seems reasonable to
assume that the functions defined by Eq. (30) are
considered as the multi-objective or penalty func-
tion with weighting factor %, respectively, which
does not offer severe results.

The validation of kriging model is performed at
Step 1. The accuracy of statistics also depends on

Define the sample points .
(Full combinations, LHD or orthogonal arrays
I
[ Construct the kriging models of responses. |

| Validate the kriging models using several indexes . |

or
le

Resample and reconstruct the kriging models of
responses. (Sequential sampling)

Use another
sample points.

Mo

P
[Validate the kriging models using severalindexes . |

s ey soRpEBE T
Yes 1
Solve the formulation for robust optimization.
(Simulated annealing algorithms)

—

Perform the confirmation analyses at the predicted
robust optimum.(Maonte-Carlo Simulation)

Fig. 2 Suggested design procedures

the accuracy of kriging model for a response.
To assess the statistic more directly than Egs.
(24) ~ (27), the metric can be defined as Eq. (31)
which is acceptable for the case that sensitivity
information is easy to obtain.

GI= 319 F (x) 1 -1V (<) I
IV (<) X100

(31)

Step 4: Determination of global robust opti-
mum

Even in a response function with only one local
optimum, its variance function may have more
than one local optimum. Thus, the gradient-based
optimization algorithm cannot supply the global
robust optimum though it is superior to any other
global optimization algorithm. Fortunately, all
the functions composing Eq. (30) are described as
simple mathematical expressions, making the ap-
plication to global optimization algorithm possi-
ble. In this research, the simulated annealing algo-
rithm is adopted to solve the formulation.

The statistics at the predicted robust optimum
determined by solving Eq. (30) can be compared
with those generated by Monte Carlo simula-
tions. The overall design process is represented in
Fig. 2.

4. Example Problems

4.1 Mathematical problem
The object of this example is to determine the
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(b) Initial kriging model of f

Fig. 3 Response function of mathematical problem

global robust optimum in the Branin’s function
(Leary et al., 2004 ; Lee and Jung, 2005 ; Lee and
Park, 2005). It is assumed that the tolerance of
x: Ax; (=1, 2) is 1.0 or 0.5, its standard devia-
tion ow; is Ax;/6, each variable is statistically in-
dependent, random and normally distributed, and
p does not exist. That is, x=Db. The minimization
problem of the Branin’s function is represented
as:

Minimize  f (21, %) = (,—0.12918x7+1.59155x,—6.0) 2
+9.60212 cos (x1) +10.0 (32)
(—=5<m <5, 0<5<15)

Its two global optima are [ — 7 12.275]" and [72.275]",
and their function values are the same as 0.398.
The contour plots of true function and initial krig-
ing model are represented in Fig. 3. The dimen-
sion in each axis of Fig. 3(b) is scaled to [—1 1]2
which is consistently represented in any plot for
kriging model.

The initial kriging model is constructed by
adopting 20 point LHD. Then, by the rule of Step
2, 4 points are supplemented to enhance the ac-
curacy of initial kriging model. The Eq. (9) pro-
duces three points, while Eq. (10) does one point,
which are marked with # in Fig. 3(b). From the
looks of Fig. 3(a) or (b), it can be seen that each
point generated from Eq. (9) is near the station-
ary point. The indexes for validation are summa-
rized in Table 1. The kriging model using 24
point LHD is greatly improved as compared to
initial kriging model, which has sufficient flexi-
bility to fit the highly nonlinear function.

The robust optimization for the Branin’s func-

Table 1 Validations of kriging models
(math. Problem)

Ns

RMSE

MAXERR

Ave.% error

CV

Gl

~

20

0.934

7.023

2.087

1.377

2.477

24

0.438

3.903

0.566

0.389

1.430

tion can be formulated like Eq. (33).
Minimize  [i;(x) +3+65(x)

(33)
X <X<Xy

By applying the suggested procedures for the cases
with Ax;=1.0 and Ax;=0.5, the global robust
optima are determined to be [3.141 2.283]" and
[3.141 2.277]", respectively. They are compared
with the conventional optima and another local
robust optimum in Tables 2 and 3. The another
local robust optimum is obtained by minimizing
67(x) in lieu of fir(x) +3-6,(x), which is iden-
tical to the concave stationary point of response
function. In Tables 2 (Ax;=1.0) and 3 (Ax;=
1.0), the true statistics are calculated from 50,000
Monte Calro samples, while the approximate stat-
istics are calculated from the first-order and sec-
ond-order statistical approximation methods bas-
ed on the kriging model for f.

The sharp contrast between the first-order and
second-order statistical approximations is enhanc-
ed by their percentage error metric. Note that the
approximate statistics in Table 3 agree better with
the Monte Calro simulations than those in Table
2. At this point, it should be mentioned that the
accuracy of approximation method is intimately
linked with standard deviations of variables and
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Table 2 Statistics using the first-order and second-order statistical approximation methods (Ax;=1.0)

global robust opt. true local opt. of f true local opt. of # | local robust optimum
statistics [3.141 2.283]T [r2.272]" [—m12272]" [—0.005 5.995]"

value % error value % error value % error value % error
iy (159 0.39775 30.650 0.39770 30.841 0.39826 44.498 19.6025 0.584
2 (2M) 0.57610 0.446 0.57612 0.187 0.71938 0.255 19.5676 0.405
6 (1% 0.00372 98.242 0.00098 99.544 0.00223 99.500 0.0045 96.670
6 (2md) 0.22083 4.408 0.22090 3.191 0.43751 1.664 0.1315 2.864
1 (true) 0.57354 — 0.57505 — 0.71755 — 19.4887 —
o (true) 0.21150 — 0.21407 — 0.44492 — 0.1354 —

Table 3 Statistics using the first-order and second-order statistical approximation methods (Ax;=0.5)

global robust opt. true local opt. of f true local opt. of f | local robust optimum
statistics [3.141 2.277]" [72.272]" [—712272]7 [—0.001 5.999]7
value % error value % error value % error value % error
Lir (1% 0.39769 10.138 0.39770 10.045 0.39826 16.727 19.6025 0.048
fiy (279) 0.44229 0.061 0.44230 0.044 0.47853 0.060 19.5937 0.003
6 (1% 0.00046 99.148 0.00049 99.095 0.00111 98.959 0.0005 98.328
6 (2M) 0.05522 1.595 0.05523 2.405 0.10938 2.362 0.0328 0.889
L (true) 0.44256 — 0.44211 — 0.47825 — 19.59307 —
o (true) 0.05435 — 0.05393 — 0.10686 — 0.03318 —
o8} 1
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Fig. 4 Mean and variance of Branin’s function f
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function’s nonlinearity. In general, a design prob-
lem requiring robust design has large perturba-
tion and highly nonlinear response. Thus, it is de-
sirable to employ the second-order statistical ap-
proximation method rather than the first-order
statistical approximation method for robust opti-
mization. As mentioned in Sec. 2.4, the first-
order statistical approximation method has other
shortcomings that it cannot find the global robust
optimum. The means and variances of true func-
tion and kriging model are represented in Fig. 4
(a), (b), (c) and (d). From the Fig. 4(a) ~ (d),
it is clear that the contours of approximate statis-
tics are almost identical with those of true statis-
tics, which are calculated through 50,000 Monte
Carlo samples for each of 50X 50 equally spaced
points.

4.2 Two-bar structure

A two-bar structure design problem for con-
ventional optimization is defined as (Jin et al.,
2003)

Minimize 'V

Subject to S< Snax

S<Sen (34)
20 mm<d <80 mm, 200 mm< H <1000 mm, {=2.5 mm

oy o PIBTIE R
VRN B 5= S TS (D

where V is the volume, S is the normal stress,
Smax is 400 MPa, Ser; is the critical buckling
stress, d is the mean diameter of thin tube, # is
the thickness, 2B is the width, H is the height, P
is the acting force, and E is Young’s modulus.
The two-bar structure is represented in Fig. 5.
The random variables are set up as x=[d H B E
P]7, which are separated as the design variables
b=[d H]" and the design parameters p=[B E
P]". The mean values of design parameters /s, /&
and /p are described in Fig. 5. It is assumed that
each variable is statistically independent, random
and normally distributed, the tolerance AX is
[3.0mm 60.0 mm 60.0 mm 30,000 MPa 30,000 N]7,
and Ax; is 60x:.

First, to build three kriging models for volume,
normal stress and critical buckling stress, the sam-
ple points should be determined. In this example,

an orthogonal array OA (64,2,8,9) (Sherwood, 2005)
is adopted in which the numbers in parenthesis re-
present number of experiments, number of strength,
number of levels and number of columns. Since
we treat five random variables, the last 4 columns
are deleted. The kriging models for volume, stress
and critical buckling stress are constructed by
solving Eq. (6) three times. Secondly, additional
sample points should be determined by applying
Egs. (9) and (10). However, since there are three
responses, one of the three responses should be
selected to apply Step 2. In this study, the volume
response is arbitrarily selected, then one point by
Eq. (9) and the other point by Eq. (10) are deter-
mined. The additional point by Eq. (9) is identi-
cal to one of the existing sample points. Thus,
the sequential kriging model determined from 65
sample points is constructed.

From Table 4, it is seen that the accuracy of
volume model using 65 sample points is greatly
improved, as compared to 64 sample point case.
However, the CV's for normal stress and critical
buckling stress in 65 sample points are slightly
worse than those in 64 sample points, which pro-

2B J  ue=205GPa
Sme=400MPa

Fig. 5 Two-bar structure

A

Table 4 Validations of kriging models (2-bar

structure)

ns  RMSE|MAXERR [Ave.% error| CV | GI
.. |64]2791.6| 24938.0 0.203 1806.5(0.982
4 65| 809.8 3159.2 0.102 308.5/0.781
|64 9.748 126.055 0.811 10.496|3.312
S 651 9.092 [ 117.160 0.660 10.631|2.634
. |64 2.963 21.720 0.403 5.645(1.180
Sert 65| 2.650 18.287 0.294 6.630(1.114
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duces an effect contrary to our intention. That
would be error in calculating CV. The error
comes from the fact that the C Vis obtained based
on [ and @ calculated with 75 samples.

By Step 3, a robust optimization formulation
using the approximate statistics based on kriging
models can be defined like Eq. (35).

Minimze  [iy+36y

Subject to 1s+36s< Smax
[ist305< flers —30crz

20 mm <d <80 mm, 200 mm< H <1000 mm, £=2.5 mm

(35)

In Eq. (35), all the statistics are calculated by
using Egs. (15)-(16). Even though the kriging
models for three responses are expressed as five
random variables, Eq. (35) has two variables of
d and H. For each response, the contour plots
of approximate statistics are represented in Figs.
6-8. These figures prove clearly that the plots of
approximate statistics are very much like those
of true statistics over the design space. The plots
for true statistics are created over 50X 50 equally
spaced points with 50,000 Monte Calro samples.

Finally, after the formulation of Eq.(35) is
defined, the simulated annealing algorithm is ap-
plied to find the global robust optimum, consi-
dering constraint robustness. This process does
not offer severe computational burden since the
functions composing Eq. (35) are expressed as
simple and explicit mathematical equations. Through
Step 4, the robust optimum is determined as
b*=1[41.383 626.679]", while the conventional op-
timum obtained from Eq. (34) is determined as
b*=[38.200 600.304]". In Fig. 9, the convention-
al and robust optima and their distributions are
indicated together with the objective and imposed
constraint functions defined in Eq. (34). The dis-
tribution of each optimum is obtained through
5,000 Monte Carlo simulations. It is noted that a
lot of samples in the conventional optimum vio-
late the constraints, taking into account the un-
certainties of random variables. On the contrary,
the robust optimum has few violated samples.
Table 5 summarizes the statistics of convention-
al and robust optima and the probability of feasi-
bility. As Fig. 9 indicates, 51.0% of 5,000 sample
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Table 5 Conventional and robust optimum (2-bar structure)

Conventional optimum b*={38.200 600.304]"

Robust optimum b*=[41.383 626.679]T

it 7 0 o Prob.

[ /" 0 o Prob.

VvV |577086.378|576462.793| 9644.993 | 9519.463 -

635863.412/635369.321{ 10051.177 | 10209.940 -

S 398.104 | 400.223 15.806 15.178 52.0%

358.491 | 360.009 13.755 13.263 99.6%

Serit 401.310 | 400.068 16.608 15.178 51.0%

454.643 | 453.560 18.215 18.649 100.0%

g ” ) ] 5 €5 10 0

Fig. 9 Conventional optimum and robust optimum

points in the conventional optimum lie in feasible
region, while 99.6% in the robust optimum lie in
feasible region.

5. Conclusions

The following conclusions can be made from
this study.

(1) The robust optimization is achieved through
kriging approach, approximate statistics and glob-
al optimization algorithm. The kriging model
using sequential sampling methods are construct-
ed, considering the robustness of a response. The
construction of the reliable kriging model facili-
tates the calculations of second-order approxi-
mate statistics. These approximate statistics en-
able one to solve the formulation for robust opti-
mization with simulated annealing algorithm.

(2) A design problem requiring robust design
has relatively large perturbation of random vari-
able and highly nonlinear response. Through the
mathematical problem with multi-modal func-
tion, we can see that the suggested optimization
procedure is successfully applied to that kind of
design problem. This study has shown that it is
desirable to employ the second-order statistical

approximation method rather than the first-order
statistical approximation method for robust opti-
mization.

(3) A robust optimization formulation has been
presented. That combines robust design and appro-
ximation concepts, complementing the deficien-
cies of deterministic optimization. For an exam-
ple, the robust optimization for two-bar structure
is successfully performed. The suggested proce-
dures can be applied to a variety of structural
design for robust optimization. In terms of com-
putational efficiency, it is seen that the suggested
method can be applicable to structural design.

(4) An implementation deriving mean and vari-
ance of a response can be applied to a design
methodology using stochastic approach. Especi-
ally, the results of this study point to several pro-
mising applications for reliability based analysis
and design. That topic will be left as the future
work.
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